Distributed reinforcement learning for network intrusion response

نویسنده

  • Kleanthis Malialis
چکیده

The increasing adoption of technologies and the exponential growth of networks has made the area of information technology an integral part of our lives, where network security plays a vital role. One of the most serious threats in the current Internet is posed by distributed denial of service (DDoS) attacks, which target the availability of the victim system. Such an attack is designed to exhaust a server’s resources or congest a network’s infrastructure, and therefore renders the victim incapable of providing services to its legitimate users or customers. To tackle the distributed nature of these attacks, a distributed and coordinated defence mechanism is necessary, where many defensive nodes, across different locations cooperate in order to stop or reduce the flood. This thesis investigates the applicability of distributed reinforcement learning to intrusion response, specifically, DDoS response. We propose a novel approach to respond to DDoS attacks called Multiagent Router Throttling. Multiagent Router Throttling provides an agent-based distributed response to the DDoS problem, where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. One of the novel characteristics of the proposed approach is that it has a decentralised architecture and provides a decentralised coordinated response to the DDoS problem, thus being resilient to the attacks themselves. Scalability constitutes a critical aspect of a defence system since a non-scalable mechanism will never be considered, let alone adopted, for wide deployment by a company or organisation. We propose Coordinated Team Learning (CTL) which is a novel design to the original Multiagent Router Throttling approach based on the divide-and-conquer paradigm, that uses task decomposition and coordinated team rewards. To better scale-up CTL is combined with a form of reward shaping. The scalability of the proposed system is successfully demonstrated in experiments involving up to 1000 reinforcement learning agents. The significant improvements on scalability and learning speed lay the foundations for a potential real-world deployment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Network Defence and Reinforcement Learning

The increasing number of security incidents against computer networks has made insufficient network management and intrusion detection approaches to maintain and to protect these complex systems. Even distributed intrusion detection seems to be not enough if it is used isolated from other disciplines. My research will focus in how network and security agents can learn to detect and to categoris...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Multi-agent Reinforcement Learning for Intrusion Detection

Intrusion Detection has been investigated for many years and the field has matured. Nevertheless, there are still important challenges, e.g., how an IDS can detect new and complex distributed attacks. To tackle these problems, we propose a distributed Reinforcement Learning (RL) approach in a hierarchical architecture of network sensor agents. Each network sensor agent learns to interpret local...

متن کامل

Proposing A Distributed Model For Intrusion Detection In Mobile Ad-Hoc Network Using Neural Fuzzy Interface

Security term in mobile ad hoc networks has several aspects because of the special specification of these networks. In this paper a distributed architecture was proposed in which each node performed intrusion detection based on its own and its neighbors’ data. Fuzzy-neural interface was used that is the composition of learning ability of neural network and fuzzy Ratiocination of fuzzy system as...

متن کامل

Proposing A Distributed Model For Intrusion Detection In Mobile Ad-Hoc Network Using Neural Fuzzy Interface

Security term in mobile ad hoc networks has several aspects because of the special specification of these networks. In this paper a distributed architecture was proposed in which each node performed intrusion detection based on its own and its neighbors’ data. Fuzzy-neural interface was used that is the composition of learning ability of neural network and fuzzy Ratiocination of fuzzy system as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014